我们在定期马尔可夫决策过程(MDP)中学习学习,这是一种特殊类型的非平稳MDP,在平均奖励最大化设置下,状态过渡概率和奖励功能都定期变化。我们通过使用周期指数来扩大状态空间来将问题作为固定的MDP提出,并提出了定期上限置信度结合增强学习2(PUCRL2)算法。我们表明,pucrl2的遗憾随着时期和地平线长度的次线性而变化。数值结果证明了PUCRL2的功效。
translated by 谷歌翻译
Several self-supervised representation learning methods have been proposed for reinforcement learning (RL) with rich observations. For real-world applications of RL, recovering underlying latent states is crucial, particularly when sensory inputs contain irrelevant and exogenous information. In this work, we study how information bottlenecks can be used to construct latent states efficiently in the presence of task-irrelevant information. We propose architectures that utilize variational and discrete information bottlenecks, coined as RepDIB, to learn structured factorized representations. Exploiting the expressiveness bought by factorized representations, we introduce a simple, yet effective, bottleneck that can be integrated with any existing self-supervised objective for RL. We demonstrate this across several online and offline RL benchmarks, along with a real robot arm task, where we find that compressed representations with RepDIB can lead to strong performance improvements, as the learned bottlenecks help predict only the relevant state while ignoring irrelevant information.
translated by 谷歌翻译
We introduce camouflaged data poisoning attacks, a new attack vector that arises in the context of machine unlearning and other settings when model retraining may be induced. An adversary first adds a few carefully crafted points to the training dataset such that the impact on the model's predictions is minimal. The adversary subsequently triggers a request to remove a subset of the introduced points at which point the attack is unleashed and the model's predictions are negatively affected. In particular, we consider clean-label targeted attacks (in which the goal is to cause the model to misclassify a specific test point) on datasets including CIFAR-10, Imagenette, and Imagewoof. This attack is realized by constructing camouflage datapoints that mask the effect of a poisoned dataset.
translated by 谷歌翻译
We address the problem of few-shot classification where the goal is to learn a classifier from a limited set of samples. While data-driven learning is shown to be effective in various applications, learning from less data still remains challenging. To address this challenge, existing approaches consider various data augmentation techniques for increasing the number of training samples. Pseudo-labeling is commonly used in a few-shot setup, where approximate labels are estimated for a large set of unlabeled images. We propose DiffAlign which focuses on generating images from class labels. Specifically, we leverage the recent success of the generative models (e.g., DALL-E and diffusion models) that can generate realistic images from texts. However, naive learning on synthetic images is not adequate due to the domain gap between real and synthetic images. Thus, we employ a maximum mean discrepancy (MMD) loss to align the synthetic images to the real images minimizing the domain gap. We evaluate our method on the standard few-shot classification benchmarks: CIFAR-FS, FC100, miniImageNet, tieredImageNet and a cross-domain few-shot classification benchmark: miniImageNet to CUB. The proposed approach significantly outperforms the stateof-the-art in both 5-shot and 1-shot setups on these benchmarks. Our approach is also shown to be effective in the zero-shot classification setup
translated by 谷歌翻译
Soft actuators have attracted a great deal of interest in the context of rehabilitative and assistive robots for increasing safety and lowering costs as compared to rigid-body robotic systems. During actuation, soft actuators experience high levels of deformation, which can lead to microscale fractures in their elastomeric structure, which fatigues the system over time and eventually leads to macroscale damages and eventually failure. This paper reports finite element modeling (FEM) of pneu-nets at high angles, along with repetitive experimentation at high deformation rates, in order to study the effect and behavior of fatigue in soft robotic actuators, which would result in deviation from the ideal behavior. Comparing the FEM model and experimental data, we show that FEM can model the performance of the actuator before fatigue to a bending angle of 167 degrees with ~96% accuracy. We also show that the FEM model performance will drop to 80% due to fatigue after repetitive high-angle bending. The results of this paper objectively highlight the emergence of fatigue over cyclic activation of the system and the resulting deviation from the computational FEM model. Such behavior can be considered in future controllers to adapt the system with time-variable and non-autonomous response dynamics of soft robots.
translated by 谷歌翻译
State-of-the-art pre-trained language models (PLMs) outperform other models when applied to the majority of language processing tasks. However, PLMs have been found to degrade in performance under distribution shift, a phenomenon that occurs when data at test-time does not come from the same distribution as the source training set. Equally as challenging is the task of obtaining labels in real-time due to issues like long-labeling feedback loops. The lack of adequate methods that address the aforementioned challenges constitutes the need for approaches that continuously adapt the PLM to a distinct distribution. Unsupervised domain adaptation adapts a source model to an unseen as well as unlabeled target domain. While some techniques such as data augmentation can adapt models in several scenarios, they have only been sparsely studied for addressing the distribution shift problem. In this work, we present an approach (MEMO-CL) that improves the performance of PLMs at test-time under distribution shift. Our approach takes advantage of the latest unsupervised techniques in data augmentation and adaptation to minimize the entropy of the PLM's output distribution. MEMO-CL operates on a batch of augmented samples from a single observation in the test set. The technique introduced is unsupervised, domain-agnostic, easy to implement, and requires no additional data. Our experiments result in a 3% improvement over current test-time adaptation baselines.
translated by 谷歌翻译
Building an AI agent that can design on its own has been a goal since the 1980s. Recently, deep learning has shown the ability to learn from large-scale data, enabling significant advances in data-driven design. However, learning over prior data limits us only to solve problems that have been solved before and biases data-driven learning towards existing solutions. The ultimate goal for a design agent is the ability to learn generalizable design behavior in a problem space without having seen it before. We introduce a self-learning agent framework in this work that achieves this goal. This framework integrates a deep policy network with a novel tree search algorithm, where the tree search explores the problem space, and the deep policy network leverages self-generated experience to guide the search further. This framework first demonstrates an ability to discover high-performing generative strategies without any prior data, and second, it illustrates a zero-shot generalization of generative strategies across various unseen boundary conditions. This work evaluates the effectiveness and versatility of the framework by solving multiple versions of two engineering design problems without retraining. Overall, this paper presents a methodology to self-learn high-performing and generalizable problem-solving behavior in an arbitrary problem space, circumventing the needs for expert data, existing solutions, and problem-specific learning.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Privacy, security, and bandwidth constraints have led to federated learning (FL) in wireless systems, where training a machine learning (ML) model is accomplished collaboratively without sharing raw data. Often, such collaborative FL strategies necessitate model aggregation at a server. On the other hand, decentralized FL necessitates that participating clients reach a consensus ML model by exchanging parameter updates. In this work, we propose the over-the-air clustered wireless FL (CWFL) strategy, which eliminates the need for a strong central server and yet achieves an accuracy similar to the server-based strategy while using fewer channel uses as compared to decentralized FL. We theoretically show that the convergence rate of CWFL per cluster is O(1/T) while mitigating the impact of noise. Using the MNIST and CIFAR datasets, we demonstrate the accuracy performance of CWFL for the different number of clusters across communication rounds.
translated by 谷歌翻译
Recent developments in the methods of explainable AI (XAI) methods allow researchers to explore the inner workings of deep neural networks (DNNs), revealing crucial information about input-output relationships and realizing how data connects with machine learning models. In this paper we explore interpretability of DNN models designed to identify jets coming from top quark decay in high energy proton-proton collisions at the Large Hadron Collider (LHC). We review a subset of existing top tagger models and explore different quantitative methods to identify which features play the most important roles in identifying the top jets. We also investigate how and why feature importance varies across different XAI metrics, how feature correlations impact their explainability, and how latent space representations encode information as well as correlate with physically meaningful quantities. Our studies uncover some major pitfalls of existing XAI methods and illustrate how they can be overcome to obtain consistent and meaningful interpretation of these models. We additionally illustrate the activity of hidden layers as Neural Activation Pattern (NAP) diagrams and demonstrate how they can be used to understand how DNNs relay information across the layers and how this understanding can help to make such models significantly simpler by allowing effective model reoptimization and hyperparameter tuning. By incorporating observations from the interpretability studies, we obtain state-of-the-art top tagging performance from augmented implementation of existing network
translated by 谷歌翻译